6.不必注意多处理器机器 你的代码在多处理器系统上比在单处理器系统上运行得还要糟,这可能是件令人恶心的事。一个很自然的想法是,在一个N维系统上运行N次会更好。性能很差的原因是竞争:锁竞争,总线竞争,和/或缓存列竞争。处理器都在是争夺共享资源的所有权,而不是做更多的工作。 如果你一定要编写多线程应用程序的话,你应该在多处理器盒上对你的应用程序进行强度测试和性能测试。单处理器系统通过时间分片地执行线程而提供一个并发性的假象。多处理器盒具有真正的并发性,竞争环境和竞争更容易发生。 7.应该始终使用模块化调用;他们很有趣。 利用同步模块化调用来执行I/O操作对大多数桌面应用程序来说是合适的。但是,他们不是使用服务器上的CPU(s)的好方法。I/O操作要花费上百万个时钟周期来完成,这些时钟周期本来可以被更好地利用。利用异步I/O你能得到显著提高的用户请求率和I/O通量,不过增加了额外的复杂性。 如果你有需要花费很长时间的模块化调用或I/O操作,你应该考调拨多少资源给他们。你想使用所有的线程还是有个限制?一般地,使用有限的几个线程要好些。构建一个小的线程池和队列,利用队列来安排线程的工作完成模块化调用。这样,其他线程就可以拾取和处理你的非模块化的请求。 8.不要进行测量 当你能够测量你所谈论的事情并用数字表达它时,这就表示你对他有了一定的了解;但是如果你不能用数字表达时,你的知识是贫瘠的不能令人满意的;这可能是知识的开始,但这时你简直不可能将你的思想提高到科学的水平。 - Lord Kelvin (William Thomson) 如果不测量你就不能了解应用程序的特性。你在黑暗中摸索,一半是靠猜测。如果不识别性能问题,你就不能做任何改进或做出工作量计划。 测量包括黑匣子测量和profiling。黑匣子测量的意思是收集由性能计数器(内存使用,上下文交换,CPU利用等)和外部检测工具(通量,反映时间等)所显示的数据。为了profile你的代码,你编译代码的一个工具版,然后在各种条件下运行它,并收集关于执行时间和过程调用频率的统计数据。 测量如果不用于分析的话就一点用都没有。测量将不仅告诉你有问题,而且甚至能帮助你找到问题发生在哪,但它不能告诉你为什么会有问题。对问题进行分析以便你能正确地改正他们。要从根本上解决问题而不是停留在表面现象。 当你进行改动后,要重新测量。你要知道你的改动是否有效。改动也可能会暴露其他性能问题,测量-分析-改正-再测量的循环就会重新开始。你也必须要有规律地进行测量,以便发现性能衰退问题。 9.应该使用单一用户,单一请求的测试方法。 书写ASP和ISAPI应用程序的一个通病是只用一个浏览器去测试应用程序。当他们在Internet上应用他们的程序时,他们才发现他们的应用程序不能处理高负载,并且通量和反应时间另人可怜。 用一个浏览器测试是必要的但是不够的。如果浏览器反应得不够快,你就知道你有麻烦了。但即使它在使用一个浏览器时很快,你也不知道它处理负载的能力如何。如果十几个用户同时请求会发生什么事?一百个呢?你的应用程序能容忍什么样的通量?它能提供什么样的反应时间?在轻载时这些数字会怎样?中等负载呢?重载呢?在多处理器机器上你的应用程序会如何?对你的应用程序进行强度测试,这对于找出bugs发现性能问题来说是基本的。 类似的负载测试考虑适用于所有的服务器应用程序。 10.不应使用实际环境。 人们往往只在几个特定的,人工的环境(如下benchmarks)下调整应用程序。选择和实际情况相对应的各种情况,并为针对各种操作进行优化,这一点很重要。如果你不这样做,你的用户和评论家一定会这样做,并且他们将依此来评判你的应用程序的好坏。 (责任编辑:admin) |