当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
分表 1,做mysql集群。例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等 有人会问mysql集群,和分表有什么关系吗?虽然它不是实际意义上的分表,但是它起到了分表的作用。做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量。 举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。 优点:扩展性好,没有多个分表后的复杂操作(php代码) 缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。 2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表 这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。 优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间 缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。 3,利用merge存储引擎来实现分表 我觉得这种方法比较适合,那些没有事先考虑,而已经出现了的,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了。现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举子 mysql>show engines;的时候你会发现mrg_myisam其实就是merge。
优点:扩展性好,并且程序代码改动的不是很大 缺点:这种方法的效果比第二种要差一点 (责任编辑:yang) |